啤酒貼標機取標機構計算機輔助設計
2013-06-03 by:廣州有限元分析、培訓中心-1CAE.COM 來源:仿真在線
通過對啤酒貼標機取標機構運動誤差的分析,提出了機構中各主要技術參數和凸輪曲線的設計計算方法,并開發了相應的計算機輔助設計軟件。
張杰 方漪 來源:機械
關鍵字:機構學 計算機輔助設計 貼標機取標機構
貼標機是啤酒生產線上的一個重要設備,其主要功能是將商標紙均勻地貼在啤酒瓶表面上。其中取標機構最為復雜,且運動要求很高,是貼標機設計中的難點。取標機構的工作原理如圖1所示。在取標過程中,轉盤1繞O0點作勻速轉動,轉盤下方固定安裝一盤形凸輪2,當扇形齒輪3隨轉盤1作公轉運動時,凸輪2的曲線可通過銷軸4控制扇形齒輪3繞O1點作自動運動。取標板5和齒輪6固連在一起,隨轉盤作公轉運動,其繞O2點的自轉運動是由扇形齒輪3驅動的。標板7上安裝有商標紙,在圖示位置固定不動。若取標板5的復合運動能使取標板沿標板7在長度L的范圍內作純滾動,則可圓滿地完成取標作業。
1.轉盤 2.凸輪 3.扇形齒輪 4.銷軸 5.齒輪 6.取標板 7.標板
圖1 取標機構工作原理
因此,貼標機取標機構的設計工作主要為:(1)當轉盤回轉半徑R、標板長度L等參數給定后,求出取標板的半徑r和偏心e的最佳值;(2)求出滿足運動要求的凸輪曲線。
由于上述機構運動關系十分復雜,手工設計只能靠試湊的辦法來解決,無法得出最佳設計參數,很難保證整個機構的運行效果。因此本文采用計算機輔助設計的方法,開發出了相應的軟件,成功地解決了上述難題。
1 取標過程運動誤差分析
設取標板沿標板作純滾動,則取標板回轉中心O2的運動軌跡應為擺線,見圖2。
圖2 取標過程運動誤差分析
圖中
x=rt-esint (1)
y=r-ecost (2)
其中,-L/2r≤t≤L/2r。然而,取標板回轉中心O2的實際運動軌跡為圓,因此與運動要求存在誤差。由于機構的對稱性,僅研究圖示位置(t≥0)的情況,可得
2 問題求解
由于機構的原因,運動誤差不可避免,當x方向上產生誤差時,取標板將在標板表面產生滑移;當y方向上產生誤差時,取標板將擠壓標板。所以在設計時應正確選擇取標板半徑r和偏心e,使得誤差達到最小,即
(5)
式中:α1、α2為權因子系數,分別代表了x和y方向上的誤差系數,并且α1+α2=1。由于標板在y方向為彈性支承,允許標板產生一定范圍的法向位移,通常取α1>α2。
由于式(5)定義的是一個泛函極值的問題,且需要求解非線形方程組,十分困難。因此,本文采用了優化算法。以r、e為變量,以式(5)為目標函數進行求解。在目標函數計算時,以t為變量,以一定的步長掃描0~L/(2r)的范圍,求出最大值。這里沒有采用一維搜索的方法,主要是擔心由于函數關系復雜而導致計算失敗。盡管如此,在實際計算時,速度仍然很快,無須等待。
3 計算凸輪曲線
如圖3所示,設當O2隨轉盤轉于p{xp,yp}點時
xp=Rsinθp yp=Rcosθp
式中:θ為轉盤的轉角。
根據式(1)、式(2)得
xp=rtx-esintx (6)
yp=r-R-ecosty (7)
根據式(6)、式(7)可求tx,ty,令
tp=α1tx+α2ty (8)
可求出θp與tp之間的對應關系,根據t的轉角以及扇形齒3與齒輪5之間的傳動比以及銷軸孔的位置完全確定后,可方便地求出凸輪曲線。
圖3 取標板轉角計算
4 軟件編程
為實現以上設計計算,在AutoCAD環境下,用ADS開發出了計算機輔助設計軟件,該軟件共分以下幾個模塊:(1)用戶輸入模塊 主要提供一個用戶輸入數據的界面,其中包括標板長度、轉盤回轉半徑、齒輪齒數等幾何參數,以及取標板半徑和偏心距的最大、最小值,權系數α1、α2等參數的輸入。(2)r、e計算模塊 根據用戶輸入數據,利用優化算法計算出r、e的值,并將計算結果顯示于屏幕。(3)凸輪曲線計算模塊 根據以上計算結果和擁護輸入的數據,計算凸輪曲線,并將計算結果保存于數據文件。(4)動態仿真模塊 根據以上數據模擬顯示取標運動過程,并可顯示在運動過程的中法向和切向誤差。(5)繪圖模塊 用于繪制凸輪曲線、機構原理圖、運動誤差分析等的圖形顯示等。
5 應用實例
青島機床廠是生產啤酒設備的專業生產廠,該廠在生產中需要開發取標板長度L=130mm的貼標機,該貼標機轉盤回轉半徑R=135mm,扇形齒齒數Z1=64,齒輪Z2=18,中心距a=103.5mm,銷軸偏心h=50mm,銷軸偏角f=9.75°,最小半徑r=40mm,最大半徑r=80mm,最小間距D=38mm,最大間距D=40mm。應用本文所屬計算機輔助設計軟件的計算結果為:半徑r=56.11mm,間距為D=40mm。α1=1、α2=0時(無滑動),最大法向誤差為0.726mm,切向誤差為零;α1=0.9、α2=0.1時,法向誤差為0.692mm,切向誤差為0.296mm;α1=0.5、α2=0.5時,法向誤差為0.357mm,切向誤差為1.476mm;α1=0、α2=1時(無擠壓),法向誤差為零,最大切向誤差為2.941mm。該數據在貼標機設計中得到了應用。
相關標簽搜索:啤酒貼標機取標機構計算機輔助設計 Fluent、CFX流體分析 HFSS電磁分析 Ansys培訓 Abaqus培訓 Autoform培訓 有限元培訓 Solidworks培訓 UG模具培訓 PROE培訓 運動仿真